翻訳と辞書 |
Kolmogorov's inequality : ウィキペディア英語版 | Kolmogorov's inequality In probability theory, Kolmogorov's inequality is a so-called "maximal inequality" that gives a bound on the probability that the partial sums of a finite collection of independent random variables exceed some specified bound. The inequality is named after the Russian mathematician Andrey Kolmogorov. ==Statement of the inequality== Let ''X''1, ..., ''X''''n'' : Ω → R be independent random variables defined on a common probability space (Ω, ''F'', Pr), with expected value E() = 0 and variance Var() < +∞ for ''k'' = 1, ..., ''n''. Then, for each λ > 0, : where ''S''''k'' = ''X''1 + ... + ''X''''k''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Kolmogorov's inequality」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|